Math 8 Homework 6

1 Clever Counting

(a) How many ordered triples (A, B, C) of sets satisfy both $A \cap B \cap C=\varnothing$ and $A \cup B \cup C=\{1,2, \ldots, n\}$?
(b) Given $n \in \mathbb{N}$, prove that $x=\left(n^{2}\right)!/(n!)^{n}$ is an integer by inventing a counting problem for which x is the answer.
(c) Let S be a set with n elements. Evaluate each of these in closed form:
(i) $\sum_{A \subseteq S}|A|$
(ii) $\sum_{A, B \subseteq S}|A \cap B|$
(d) Given positive integers n, k with $k \leq n$, the Stirling number of the second kind $S(n, k)$ is defined to be the number of ways to place n balls into k identical boxes, leaving no box empty.
(i) Evaluate $S(n, 1), S(n, 2), S(n, n-1)$ and $S(n, n)$.
(ii) Count two ways to prove that

$$
S(n, k)=S(n-1, k-1)+k S(n-1, k)
$$

(iii) Use the previous parts and induction to prove that

$$
S(n, n-2)=\binom{n}{3}+3\binom{n}{4}
$$

(e) Let S be a set of n real numbers. Given each nonempty subset of S we can compute its average; in this way we can produce $2^{n}-1$ numbers. Prove that the average of these $2^{n}-1$ numbers is the average of S.
(f) Let $S=\{1,2, \ldots, n\}$. Each k-element subset of S has a smallest element; in this way we produce $\binom{n}{k}$ numbers. Prove the average of these smallest elements is $(n+1) /(k+1)$.

2 Binomial Identities

For each of the following, invent a situation and count in two ways to prove the identity. Assume all variables are arbitrary positive integers.
(a) $\binom{n}{k}=\binom{n}{n-k}$
(b) $\binom{n+1}{k+1}=\binom{n}{k}+\binom{n}{k+1}$
(c) $\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m}$
(d) $\sum_{k}\binom{n}{k}=2^{n}$
(e) $\sum_{k} k\binom{n}{k}=n 2^{n-1}$
(f) $\sum_{k}\binom{n}{k}\binom{m}{r-k}=\binom{n+m}{r}$
(g) $\sum_{k} k\binom{n}{k}^{2}=n\binom{2 n-1}{n-1}$

